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Abstract

The probabilistic formulas relating standard and mixed
type re¯ections (these last show integral and half-
integral indices) are derived. It is shown that probabil-
istic estimates can be obtained by using particular
sections of the three-dimensional reciprocal space. The
concept of structure invariant is extended to de®ne the
wider class of structure quasi-invariant. Their statistical
behaviour is brie¯y discussed with the help of some
practical tests.

1. Symbols and notation

Papers by Giacovazzo & Siliqi (1998), Giacovazzo,
Siliqi, Carrozzini et al. (1999), Giacovazzo, Siliqi,
Altomare et al. (1999), Giacovazzo, Siliqi & FernaÂndez-
CastanÄ o (1999) and Giacovazzo, Siliqi, FernaÂndez-
CastanÄ o & Comunale (1999) will be referred to as
papers I, II, III, IVand V, respectively. The notation here
adopted is essentially that used in papers IV and V, to
which the reader is referred.

2. Introduction

In paper IV, the joint probability distribution

P�Ap;Bp;Aq1
;Bq1

; . . . ;Aqn
;Bqn
� �1�

was derived, where A and B are the real and imaginary
parts of the structure factor F, and pj and qj,
j � 1; . . . ; n, are rational indices. The distribution (1)
may be written in the form

P�X� � P�X1;X2; . . . ;X2n�1;X2n�2�;

where the variable Xj represents Ap, Bp, Aq, Bq

according to the value of j (i.e. X1 � Ap, X2 � Bp,
X3 � Aq1

, X4 � Bq1
, X5 � Aq2

, . . . ). The ®nal distribu-
tion may be written in the form

P�X� � �2��ÿ�n�1��det ��1=2 exp ÿ 1
2

P2n�2

j�1

�jjd
2
j

 

ÿ P2n�2

j�2

�1jd1dj ÿ
P2n�2

j�3

�2jd2dj ÿ
P2n�2

j1>j2�3

�j1j2
dj1

dj2

!
;

�2�
where

� � Kÿ1; K �

K11 K12 . . . K1;2n�2

K21 K22 . . . K2;2n�2

..

. ..
. . .

. ..
.

K2n�2;1 K2n�2;2 . . . K2n�2;2n�2

���������

���������:
K is the variance±covariance matrix [by de®nition,
(det K) > 0].

From (2), formulas estimating Ap or Bp given the
prior knowledge of Aq and Bq, for q � 1; . . . ; n, were
derived [see relationships (GPR1)±(GPR8) of paper
IV]. Such formulas require the inversion of the matrix K,
which is a dif®cult and rather lengthy job if n is large.

The calculations become very simple in the canonical
case: e.g. when p is a half-integral index and the q's are
standard indices (option 1) or, vice versa, when p is a
Miller index and the q are half-integral indices (option
2). In this case, the matrix K assumes the form

K �

K11 0 0 K14 0 K16 0 K18 . . . K1;2n�2

0 K22 K23 0 K25 0 K27 0 . . . 0

0 K23 K33 0 0 0 0 0 . . . 0

K14 0 0 K44 0 0 0 0 . . . 0

0 K25 0 0 K55 0 0 0 . . . 0

K16 0 0 0 0 K66 0 0 . . . 0

0 K27 0 0 0 0 K77 0 . . . 0

K18 0 0 0 0 0 0 K88 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

K1;2n�2 0 0 0 0 0 0 0 . . . K2n�2;2n�2

��������������������������

��������������������������
�3�
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and the inversion of K is no longer necessary. Then the
following formulas were derived:

hApjfAq;Bqgi �
P

q

f�K14�p; q�=K02�q���Bq ÿ K01�q��g

�P
q

f�11�p; q�=��2�q��1ÿ 2s2
q��

� �sp�q � sqÿp�g�Bq ÿ�1�q�sq� �CPR1�

VAp
� K20�p� ÿ

P
q

�K2
14�p; q�=K02�q��

� 1
2

�
�2�p� ÿ

P
q

ÿf�2
11�p; q�=��2�q���1ÿ 2s2

q�g

� �sp�q � sqÿp�2
�� �CPR2�

hBpjfAq;Bqgi � K01�p� �
P

q

�K23�p; q�=K20�q��Aq

� �1�p�sp �
P

q

f��11�p; q�=�2�q��

� �sp�q � spÿq�gAq �CPR3�

VBp
� K02�p� ÿ

P
q

�K2
23�p; q�=K20�q��

� 1
2

�
�2�p��1ÿ 2s2

p� ÿ
P

q

f��2
11�p; q�=�2�q��

� �sp�q � spÿq�2g
�
: �CPR4�

In terms of pseudonormalized structure factors, equa-
tions (CPR1)±(CPR4) may be rewritten as follows (see
paper V):

hAN
p jfAN

q ;BN
q gi �

P
q

��sp�q � sqÿp�=�1ÿ 2s2
q��

� �BN
q ÿ �Neff�1=2

sq� �CPRN1�

VAN
p
� 1

2

�
1ÿP

q

��sp�q � sqÿp�2=�1ÿ 2s2
q��
�
�CPRN2�

hBN
p jfAN

q ;BN
q gi � �Neff�1=2

sp �
P

q

�sp�q � spÿq�AN
q

�CPRN3�

VBN
p
� 1

2

��1ÿ 2s2
p� ÿ

P
q

�sp�q � spÿq�2
�
: �CPRN4�

In the ®rst part of this paper, we will show that
structure factors can also be estimated by exploiting
special sections (planes or rows) of the reciprocal lattice.
To do that, we introduce the following de®nition: a
vectorial index is said to be of mixed type if some of its
components are integers and some are half-integers,
e.g. � p1; p2; l�, � p1; k; p3�, �h; p2; p3�, �h; k; p3�, �h; p2; l�,
� p1; k; l� are all indices of mixed type. We will consider

the case in which p is of mixed type while the q's are
standard Miller indices or, vice versa, p is a standard
index and the q's are of mixed type. We will show that
the simpli®cations of the canonical case also hold for
these instances. Accordingly, from now on they will be
classi®ed as options three±six of the canonical case, in
the following order:

(a) option three: p is of type � p1; p2; l� or � p1; k; p3� or
�h; p2; p3�, and the q's are Miller indices;

(b) option four: the reverse situation of option three;
(c) option ®ve: p is of type �h; k; p3� or �h; p2; l� or
� p1; k; l� and the q's are Miller indices;

(d) option six: the reverse situation of option ®ve.
Our probabilistic formulas, estimating real and

imaginary parts of Fp, can be compared with the
geometrical formulas obtained by Mishnev (1996) via
the method of the Hilbert transform. The reader can
easily verify that our approach encompasses Mishnev
relations owing to the fact that we are able to provide
probabilistic estimates for any subset of data.

The second part of this paper is devoted to triplet-
invariant estimates when the triplets are constituted by
re¯ections with rational indices. The concept of `quasi-
invariant' will be introduced to describe triplets of
re¯ections for which the sum of the indices is close but
not equal to zero. Their statistical behaviour will be
brie¯y described.

3. The canonical case: probabilistic formulas for options
three and four

In paper IV, the joint probability distribution
P(Ap, Bp, Aq, Bq) was derived, where p and q are any
rational indices. The ®nal expression for such a distri-
bution [see equation (I.4)] holds for the canonical case
too, and may be specialized for options three and four by
properly de®ning the values of the cumulants. Let us
consider the case in which (option three of the canonical
case):

p � � p1; p2; l1� and q � �h; k; l2�
under the conditions

l1 6� l2; l1 6� 0: �4�
According to x3 of paper IV, the cumulants depend on
the parameters �1�p�, �2�p�, �1�q�, �2�q�, �11�p; q�, cp,
sp, c2p, s2p, cq, sq, c2q, s2q, cp�q, cpÿq, sp�q, spÿq. While the
� parameters depend only on the crystal structure (and,
therefore, they do not need to be rede®ned for each
special case), the c and s parameters require speci®c
calculations. Since

cp � cos��ps�cp1=2cp2=2cp3=2

sp � sin��ps�cp1=2cp2=2cp3=2

cpi
� sin�2�pi�=�2�pi�

spi
� �1ÿ cos�2�pi��=�2�pi�;
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the following results easily follow:
(a) owing to the fact that at least one component of

the vectorial indices p and q are integers,

cp � sp � cq � sq � c2p � s2p � c2q � s2q

� cp�q � sp�q � cpÿq � spÿq � 0;

(b)

K10�p� � K01�p� � K10�q� � K01�q� � 0

K20�p� � K02�p� � �2�p�=2

K20�q� � K02�q� � �2�q�=2

K12�p� � K34�p� � 0;

(c)

K13�p; q� � K14�p; q� � K23�p; q� � K24�p; q� � 0:

The same results also occur for the fourth option of
the canonical case; i.e.

p � �h; k; l2� and q � �q1; q2; l1�;
with

l2 6� l1; l2 6� 0: �5�
It may be concluded that, for options three and four
of the canonical case, under the conditions (4) and (5),
the joint probability distribution P�Ap;Bp;Aq;Bq� is
nothing but the product of the two Wilson distributions:

P�Ap;Bp;Aq;Bq� � PW�Ap;Bp�PW�Aq;Bq�:
Let us consider the case in which p and q belong to the
reciprocal-lattice plane de®ned by l � constant:

p � � p1; p2; l�; q � �hkl�; with l 6� 0: �6�
In this case,

cp � sp � cq � sq � c2p � s2p � c2q � s2q

� cp�q � sp�q � spÿq � 0

but

cpÿq � cos�� ps ÿ qs�c� p1ÿq1�=2c� p2ÿq2�=2

� ÿ�ÿ2�� p1 ÿ q1�� p2 ÿ q2��ÿ1:

Furthermore,

K10�p� � K01�p� � K10�q� � K01�q� � 0

K20�p� � K02�p� � �2�p�=2

K20�q� � K02�q� � �2�q�=2

K12�p� � K34�p� � K14�p; q� � K23�p; q� � 0

but

K13�p; q� � K24�p; q� � 0:5�11�p; q�cpÿq:

We can now consider the distribution

P�Ap;Bp;Aq1
;Bq1

;Aq2
;Bq2

; . . . ;Aqn
;Bqn
�

under the condition that qi � �hi; ki; l� (in this case, we
try to estimate Fp from re¯ections belonging to the same
section of the reciprocal lattice). The above cumulant
expressions suggest that the matrix K has the form

K �

K11 0 K13 0 K15 0 K17 0 . . . 0

0 K22 0 K24 0 K26 0 K28 . . . K2;2n�2

K13 0 K33 0 0 0 0 0 . . . 0

0 K24 0 K44 0 0 0 0 . . . 0

K15 0 0 0 K55 0 0 0 . . . 0

0 K26 0 0 0 K66 0 0 . . . 0

K17 0 0 0 0 0 K77 0 . . . 0

0 K28 0 0 0 0 0 K88 . . . 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 K2;2n�2 0 0 0 0 0 0 . . . K2n�2;2n�2

���������������������

���������������������

;

which is not coincident with equation (IV.3), but may be
algebraically treated in a similar way to that described in
paper IV. After the necessary calculations, not shown for
brevity, we obtain, for option three, the following rela-
tionships:

hApjfAq;Bqgi �
P

q

f��11�p; q�=�2�q��cpÿqgAq �7�

VAp
� �2�p�=2ÿP

q

fK2
13�p; q�=��2�q�=2�g

� �2�p�=2ÿ 1
2

P
q

f��2
11�p; q�=�2�q��c2

pÿqg �8�

hBpjfAq;Bqgi �
P

q

f��11�p; q�=�2�q��cpÿqgBq �9�

VBp
� �2�p�=2ÿ 1

2

P
q

f��2
11�p; q�=�2�q��c2

pÿqg: �10�

In a pseudonormalized form, we can rewrite (7)±(10) as

hAN
p jfAN

q ;BN
q gi �

P
q

cpÿqAN
q �MCPR1�

VAN
p
� 0:5

�
1ÿP

q

c2
pÿq

�
�MCPR2�

hBN
p jfAN

q ;BN
q gi �

P
q

cpÿqBN
q �MCPR3�

VBN
p
� 0:5

�
1ÿP

q

c2
pÿq

�
: �MCPR4�

In accordance with x1.4 of paper V, we estimate struc-
ture-factor moduli and phases as follows:

jEpj2est � hjEpj2
��fjEqj; �qgi � hjAN

p j2
�� . . .i � hjBN

p j2
�� . . .i;

�MCPR5�

h�pj . . .i � tanÿ1�hBN
p j . . .i=hAN

p j . . .i�; �MCPR6�
with variance

VjEpj � �2
jEpj � VAN

p
� VBN

p
: �MCPR7�
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It may be shown that the formulas (MCPR1)±(MCPR7)
hold also for option four. We observe:

(i) Ap depends on the prior knowledge of the Aq's and
not, as in (CPRN1)±(CPRN4) (full three-dimensional
case), on the Bq's. Equivalently, the estimate of Bp

depends on the prior information of the Bq's.
(ii) Only one reciprocal-lattice plane contributes to

the estimation of Fp. E.g:
(a) If p � � p1; p2; l3�, then only the plane �h; k; l3�

contributes. Then

cpÿq � ÿ�ÿ2�� p1 ÿ h�� p2 ÿ k��ÿ1:

(b) If p � � p1; k2; p3�, then only the plane �h; k2; l�
contributes to estimate Fp. Then,

cpÿq � ÿ�ÿ2�� p1 ÿ h�� p3 ÿ l��ÿ1:

(c) If p � �h1; p2; p3�, then only the plane �h1; k; l�
contributes to hFpj . . .i. Then,

cpÿq � ÿ�ÿ2�� p2 ÿ k�� p3 ÿ l��ÿ1:

4. A special case of options three and four

Let us consider the case in which (option three)

p � � p1; p2; 0� and q � �h; k; 0�:
We can look at this situation as a special section of the
three-dimensional lattice or a full bi-dimensional situa-
tion.

Then,

cp � ÿ�ÿ2� p1p2�ÿ1

cpÿq � ÿ�ÿ2�� p1 ÿ h�� p2 ÿ k��ÿ1

cp�q � ÿ�ÿ2�� p1 � h�� p2 � k��ÿ1

sp � cq � sq � c2p � s2p � c2q � s2q � sp�q � spÿq � 0:

Accordingly, the cumulants of the distribution
P�Ap;Bp;Aq;Bq� are:

K10�p� � �1�p�cp

K01�p� � K10�q� � K01�q� � 0

K20�p� � �2�p��1ÿ 2c2
p�=2

K02�p� � �2�p�=2

K20�q� � K02�q� � �2�q�=2

K12�p� � K34�q� � K14�p; q� � K23�p; q� � 0

K13�p; q� � �11�p; q��cp�q � cpÿq�=2

K24�p; q� � �11�p; q��cpÿq ÿ cp�q�=2:

Let us consider, for option four, the case in which

p � �h; k; 0� and q � �q1; q2; 0�:
Then, cp � 0, cq � ÿ�ÿ2�q1q2�ÿ1 and

cpÿq � ÿ�ÿ2�� p1 ÿ h�� p2 ÿ k��ÿ1

cp�q � ÿ�ÿ2�� p1 � h�� p2 � k��ÿ1:

The same procedure described in x3 leads to the
following formulas, valid for both options:

hApjfAq;Bqgi � K10�p� �
P

q

�K13�p; q�=K20�q��

� �Aq ÿ K10�q�� �11�

VAp
� K20�p� ÿ

P
q

�K2
13�p; q�=K20�q�� �12�

hBpjfAq;Bqgi �
P

q

�K24�p; q�=K02�q��Bq �13�

VBp
� K02�p� ÿ

P
q

�K2
24�p; q�=K02�q��: �14�

For option three, equations (11)±(14), in terms of
pseudonormalized structure factors, reduce to

hAN
p jfAN

q ;BN
q gi � �Neff�1=2cp �

P
q

�cp�q � cpÿq�AN
q �15�

VAN
p
� 1

2ÿ �1=2�1ÿ 2c2
p��
P

q

�cp�q � cpÿq�2 �16�

hBN
p jfAN

q ;BN
q gi �

P
q

�cpÿq � cp�q�BN
q �17�

VBN
p
� 1

2ÿ 1
2

P
q

�cpÿq ÿ cp�q�2; �18�

where

cp � ÿ�ÿ2� p1p2�ÿ1; cp�q � ÿ�ÿ2�� p1 � h�� p2 � k��ÿ1:

For option four, equations (11)±(14) reduce to

hAN
p jfAN

q ;BN
q gi �

P
q

��cp�q � cpÿq�=�1ÿ 2c2
q��

� �AN
q ÿ �Neff�1=2

cq� �19�

VAN
p
� 1

2ÿ 1
2

P
q

��cp�q � cpÿq�2=�1ÿ 2c2
q�� �20�

hBN
p jfAN

q ;BN
q gi �

P
q

�cpÿq ÿ cp�q�BN
q �21�

VBN
p
� 1

2ÿ 1
2

P
q

�cpÿq ÿ cp�q�2: �22�

5. The canonical case: probabilistic formulas for
options ®ve and six

Let us consider the case in which

p � � p1; k1; l1� and q � �h; k2; l2�
with k1 6� k2 and=or l1 6� l2:

In accordance with x3, the distribution
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P�Ap;Bp;Aq;Bq� � P�Ap;Bp�P�Aq;Bq�
does not provide any information on Ap or Bp given
�Aq;Bq�. Suppose now that k1 � k2 and l1 � l2. In this
case,

cp � sp � cq � sq � c2p � s2p � c2q � s2q

� cp�q � cpÿq � sp�q � 0

but

spÿq � �ÿ1� p1 ÿ q1�ÿ1:

Furthermore,

K10�p� � K01�p� � K10�q� � K01�q� � 0

K20�p� � K02�p� � �2�p�=2

K20�q� � K02�q� � �2�q�=2

K12�p� � K34�q� � K13�p; q� � K24�p; q� � 0

K14�p; q� � ÿK23�p; q� � �11�p; q�sqÿp=2:

Therefore, Ap and Bp may be estimated via the re¯ec-
tions belonging to a lattice row according to:

hApjfAq;Bqgi �
P

q

f��11�p; q�=�2�q��sqÿpgBq �23�

VAp
� 0:5

�
�2�p� ÿ

P
q

f��2
11�p; q�=�2�q��s2

qÿpg
�
�24�

hBpjfAq;Bqgi � ÿ
P

q

f��11�p; q�=�2�q��sqÿpgAq �25�

VBp
� 0:5

�
�2�p� ÿ

P
q

f��2
11�p; q�=�2�q��s2

qÿpg
�
: �26�

In terms of normalized structure factors,

hAN
p jfAN

q ;BN
q gi �

P
q

sqÿpBN
q �27�

VAN
p
� 0:5

�
1ÿP

q

s2
qÿp

�
�28�

hBN
p jfAN

q ;BN
q gi � ÿ

P
q

sqÿpAN
q �29�

VBN
p
� 0:5

�
1ÿP

q

s2
qÿp

�
: �30�

In conclusion, the re¯ections Fp1k2l3
may be evaluated by

exploiting the prior knowledge of the re¯ections Fhk2l3
,

where h is a free index. Analogously, the formulas
(23)±(30) can be applied to the equivalent cases in
which:

(a) p � �h1p2l3� and q � �h1kl3� with free k index. In
this case,

sqÿp � �ÿ1� p2 ÿ k�ÿ1;

(b) p � �h1h2 p3� and q � �h1h2l� with free l index. In
this case,

sqÿp � �ÿ1� p3 ÿ l�ÿ1:

6. Experimental tests for cases with reduced
dimensionality

In the following calculations, we have used SCHWARZ
[Schweizer (undated); a = 9.049, b = 13.609, c = 13.650 AÊ ,
� = 72.79, � = 86.37,  = 85.21�; C46H70O27; space group
P1] as the test structure. To compare the estimates with
the true values, we have computed, from the published
atomic parameters, the normalized structure factors
Etrue of the standard and the mixed-type re¯ections. In
Table 1, we show the number (NM) of re¯ections of type
�h; p2 p3� with jEjest=�jEj larger than RATIO [as esti-
mated from the standard structure factors via equations
(MCPR5)±(MCPR7)], the relative average phase error
(ERR) and the discrepancy index R given by

R �P��jEjest ÿ jEjtrue

���P jEjtrue:

All the standard re¯ections were used to estimate each
mixed-type re¯ection. We observe that:

(i) jEjest=�jEj is a good ranking parameter that is able
to pick up the re¯ections accurately determined.

Table 1. Statistical outcome for the estimates of the
re¯ections of type (h, p2, p3) estimated from the standard

structure factors via equations (MCPR5)±(MCPR7)

NM is the number of re¯ections of type (h, p2, p3) with jEjest=�jEj larger
than RATIO.

RATIO NM ERR (�) R

0.0 4638 24.86 0.22
1.2 3930 18.30 0.20
3.0 2424 11.89 0.17
4.8 1220 8.91 0.14
6.6 520 7.22 0.12
8.4 174 6.19 0.11

10.2 55 4.80 0.08
12.0 17 3.88 0.10

Table 2. Statistical outcome for the estimates of the
standard re¯ections from mixed re¯ections of type

(h, p2, p3)

NI is the number of standard re¯ections with jEjest=�jEj larger than
RATIO.

RATIO NM ERR (�) R

0.0 4100 24.38 0.23
1.2 3539 18.07 0.21
3.0 2221 11.26 0.18
4.8 1153 8.59 0.15
6.6 515 6.95 0.13
8.4 193 6.09 0.11

10.2 71 5.85 0.08
12.0 26 5.19 0.06
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(ii) Both ERR and R decrease with jEjest=�jEj. When
this last parameter falls to values smaller than unity, the
estimates are unreliable (the value of ERR for the 708
re¯ections with jEjest=�jEj< 1:2 is 61�).

In Table 2, the reverse case is considered [standard
re¯ections are estimated from mixed-type re¯ections of
type �hp2 p3�]. The results are of equivalent quality. In
Table 3, we show some statistics over the other options
considered in x3. The tests prove the ef®ciency of our
probabilistic formulas.

7. About triplet invariants and triplet quasi-invariant
estimates

Triplet invariants involving integral index re¯ections
play a fundamental role for the solution of the phase
problem: their value does not depend on the origin and
can be evaluated from the diffraction magnitudes. Do
triplets involving rational indices preserve the same
properties? The answer is certainly yes because:

(i) If Fp1
; Fp2

;Fp3
are a triple of re¯ections

with rational indices, with p1; p2; p3 satisfying
p1 � p2 � p3 � 0, then

F 0p1
F 0p2

F 0p3
� Fp1

Fp2
Fp3

exp�ÿ2�i�p1 � p2 � p3�X0�
� Fp1

Fp2
Fp3

�31�
as for integral index triplets. In (31), X0 is a general
origin shift and F 0 is the structure factor calculated with
respect to the new origin. Equation (31) suggests the
following de®nition: Fp1

Fp2
Fp3

is a triplet invariant if
p1 � p2 � p3 � 0 for p1; p2; p3 rational indices.

(ii) The triplet phase probability will be based on the
positivity and on the atomicity of the electron density, as
for traditional triplet invariants. We argue then that the
Cochran (1955) relationship

P��� � �2�I0�G��ÿ1 exp�G cos ��; �32�

where � � �p1
� �p2

� �p3
and G � 2jEp1

Ep2
Ep3
j=N1=2,

will hold for rational index triplets too.
The general ef®ciency of (32) is checked in Tables 4, 5

and 6 for two types of triplets (triplets involving three
half-integral re¯ections cannot exist): (a) triplets
constituted by integral index re¯ections; (b) triplets
involving two half-integral and one integral index
re¯ection [e.g. p1 � �2:5; 3:5; 1:5�, p2 � �4:5; 8:5; 6:5�,
p3 � ��7; 5; �5�].

We have used JAMILAS [Dobson et al. (1990),
K4C64H28N8O20S4; a = 9.377, b = 12.495, c = 15.321 AÊ , �=
93.536, �= 99.335,  = 90.173�; space group P1]; BOBBY
[Barnett (undated); Na+Ca2+. N(CH2CO2)3

3ÿ; a =
9.626 AÊ ; space group P213] and SCHWARZ as test
structures. In this second case, we expanded cubic to
triclinic symmetry to simulate a P1 group. In both cases,
structure factors were calculated from the published
coordinates. The tests clearly show that the Cochran
formula can be applied to both types of triplet invariants
without any relevant modi®cation. Indeed, the triplet

Table 3. Statistics for the other options considered in x3
Re¯ection type NR ERR (�) R

(h, p2, p3) from (h, k, l) 4638 24.9 0.22
( p1, k, p3) from (h, k, l) 4752 27.0 0.25
( p1, p2, l) from (h, k, l) 4674 27.5 0.26

(h, k, l) from (h, p2, p3) 4100 24.4 0.23
(h, k, l) from ( p1, k, p3) 4100 24.0 0.22
(h, k, l) from ( p1, p2, l) 4100 26.1 0.24

Table 4. JAMILAS: triplets found among re¯ections with
|E| > 1.8

The entries refer to (a) triplets with integral indices, (b) triplets
constituted by two rational index re¯ections and one integral index
re¯ection. NTRIPL = number of triplets with G > ARG, hj�ji is the
average value of j�j.
(a) (b)

ARG NTRIPL hj�ji ARG NTRIPL hj�ji
0.0 11794 24.4 0.0 3079 18.5
2.0 11201 23.6 2.0 2716 18.1
3.8 3150 17.7 3.8 343 18.7
5.5 633 13.6 5.5 39 21.8
9.0 34 8.7 9.0 2 16.5

Table 5. BOBBY: triplets found among re¯ections with
|E| > 1.8

The entries refer to (a) triplets with integral indices, (b) triplets
constituted by two rational index re¯ections and one integral index
re¯ection. NTRIPL = number of triplets with G > ARG, hj�ji is the
average value of j�j.
(a) (b)

ARG NTRIPL hj�ji ARG NTRIPL hj�ji
0.0 2569 42.9 0.0 10758 49.3
0.8 2458 41.9 0.8 9630 47.5
2.0 678 26.3 2.0 1220 45.5
3.8 67 19.1 3.8 75 57.0
5.5 5 18.8 5.5 9 29.7

Table 6. SCHWARZ: triplets found among re¯ections
with |E| > 1.6

The entries refer to (a) triplets with integral indices, (b) triplets
constituted by two rational index re¯ections and one integral index
re¯ection. NTRIPL = number of triplets with G > ARG, hj�ji is the
average value of j�j.
(a) (b)

ARG NTRIPL hj�ji ARG NTRIPL hj�ji
0.0 3852 35.7 0.0 5532 35.5
1.2 3696 35.3 1.2 5050 34.2
2.0 1465 28.0 2.0 1356 28.0
3.8 106 18.8 3.8 49 18.7
5.5 15 12.7 5.5 4 12.2
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phase deviations from zero are of the same order for the
two types of invariants and for any value of G.

When rational indices are used, it may be much easier
to ®nd indices p1; p2; p3 whose vectorial sum is close to
zero rather than exactly equal to zero. Therefore, an
important question may be: how is the phase �
distributed when p1 � p2 � p3 is close but not equal to
zero? For example, is � expected to be close to zero if

p1 � �3; 6; �4�; p2 � �2:48; 3:18; 2:37�;
p3 � �5:40; 9:02; 1:48�

and jEp1
j, jEp2

j, jEp3
j are all large? Of course, (31) will

no longer hold, but the triplet quasi-invariants could `on
average' retain phase values close to zero, and therefore
they could be used for crystal structure solution. More
precisely, it may be expected that the Cochran formula
will approximately hold when the |�i|'s are small and
will fail when they are suf®ciently large. This expectation
is con®rmed by Tables 7, 8 and 9. Sections (a) of the
tables refer to triplet quasi-invariants for which
p1 � p2 � p3 � ��1;�3;�3�, where �i may be 0 or�0.2
for i � 1; 2; 3; sections (b) refer to quasitriplets for
which �i � 0 or �0.4 for i � 1; 2; 3. For example, in

sections (a), the statistics include cases for which
��1;�3;�3� � �0:2; 0; 0�, �0:2;ÿ0:2; 0�, �0:2; 0:2;ÿ0:2�
etc.

It is seen that the reliability of the triplet quasi-
invariants which moderately deviate from the invariance
condition [sections (a) of Tables 7, 8 and 9] is still
comparable with the invariant reliability in Tables 4, 5
and 6, while it is remarkably worse for sections (b) of
Tables 7, 8 and 9 for which higher values of |�i| have
been used. Quite interesting is the case of BOBBY, for
which the average phase value h�i, relatively large also
for invariants, increases in Table 8, section (b), enough
to make the parameter G an unuseful descriptor of the
triplet quasi-invariant reliability.

CFC is grateful for a fellowship from the `DireccioÂ n
General de EnsenÄ anza Superior' (Ministerio de
EducacioÂ n y Cultura, Spain).
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Table 7. JAMILAS: quasi-triplets found among re¯ec-
tions with |E| > 1.8

The entries in (a) refer to triplet quasi-invariants for which �i = 0 or
�0.2 for i = 1, 2, 3; the entries in (b) refer to triplet quasi-invariants for
which �i = 0 or �0.4 for i = 1, 2, 3. NQTRIPL = number of triplet
quasi-invariants with G > ARG, hj�ji is the average value of j�j.
(a) (b)

ARG NTRIPL hj�ji ARG NTRIPL hj�ji
0.0 3161 29.2 0.0 3657 51.9
2.0 2828 28.9 2.0 3403 51.4
3.8 458 23.8 3.8 633 50.0
5.5 153 18.1 5.5 292 46.6
9.0 18 12.6 9.0 77 46.8

Table 8. BOBBY: quasi-triplets found among re¯ections
with |E| > 1.8

The entries in (a) refer to triplet quasi-invariants for which �i = 0 or
�0.2 for i = 1, 2, 3; the entries in (b) refer to triplet quasi-invariants for
which �i = 0 or �0.4 for i = 1, 2, 3. NQTRIPL = number of triplet
quasi-invariants with G > ARG, hj�ji is the average value of j�j.
(a) (b)

ARG NTRIPL hj�ji ARG NTRIPL hj�ji
0.0 3062 47.9 0.0 1914 78.9
1.2 2743 47.4 1.2 1706 79.5
2.0 767 46.8 2.0 363 81.3
3.8 60 65.5 3.8 90 78.0
4.4 24 76.1 4.4 60 81.2

Table 9. SCHWARZ: quasi-triplets found among re¯ec-
tions with |E| > 1.6

The entries in (a) refer to triplet quasi-invariants for which �i = 0 or
�0.2 for i = 1, 2, 3; the entries in (b) refer to triplet quasi-invariants for
which �i = 0 or �0.4 for i = 1, 2, 3. NQTRIPL = number of triplet
quasi-invariants with G > ARG, hj�ji average value of j�j.
(a) (b)

ARG NTRIPL hj�ji ARG NTRIPL hj�ji
0.0 3346 50.5 0.0 2665 73.2
1.2 3145 50.0 1.2 2465 73.2
2.0 937 46.8 2.0 842 71.0
3.8 86 44.0 3.8 232 74.5
5.5 14 35.3 5.5 66 73.8


